

Series W-H44W-16P

Stainless Steel Flanged Swing Check Valve

Size: DN50-DN300

It is mainly designed to prevent against medium backflow and prevent a pump and its drive motor from reversal. The Watts W-H44W-16P stainless steel check valve has a wide range of applications in municipal facilities, building construction, water supply engineering, and other similar water supply and drainage systems, which have stringent requirements for water quality.

Features

- Unobstructed flow passage and low fluid resistance
- Quick disc closing
- · Sensitive action and excellent sealing performance
- · Long service life, high reliability

Pressure-Temperature

- Nominal Pressure: PN16
- Temperature Range: -29°C~150°C

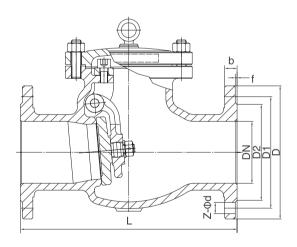
Material

Component	Material	Standard
Body	Stainless Steel	CF8
Cover	Stainless Steel	CF8
Disc	Stainless Steel	CF8
Swinging Arm	Stainless Steel	304

Installation Dimensions

Size	Dimensions							
DN	L	D	D1	D2	b	f	Z-Ød	
50	230	165	125	100	16	3	4-Ø18	
65	290	185	145	120	18	3	4-Ø18	
80	310	200	160	132	20	3	8-Ø18	
100	350	220	180	155	20	3	8-Ø18	
125	400	245	210	185	22	3	8-Ø18	
150	480	285	240	210	22	3	8-Ø23	
200	550	340	295	265	24	3	12-Ø23	
250	650	405	355	320	30	3	12-Ø25	
300	750	460	410	375	30	4	12-Ø25	

Specification


Test Standard: GB/T 13927-2008
Connection Standard: JB/T 79.1-1994
Connection Type: Flange Type

Working Medium: Water

Operating Principles

When medium flows in the required direction, the disc is opened by the force of medium to achieve medium flowing.

When the pressure at the inlet end is lower than that at the outlet end, the disc will be closed by its own weight and under the pressure applied by medium reverse flow, preventing against medium backflow.

